
Efficient Subsequence Matching Using the
Longest Common Subsequence with a Dual

Match Index

Tae Sik Han1, Seung-Kyu Ko1,�, and Jaewoo Kang2,��

1 Dept. of Computer Science, North Carolina State University
Raleigh, NC 27569, USA

2 Dept. of Computer Science and Engineering, Korea University, Seoul 136-705, Korea
kangj@korea.ac.kr

Abstract. The purpose of subsequence matching is to find a query se-
quence from a long data sequence. Due to the abundance of applications,
many solutions have been proposed. Virtually all previous solutions use
the Euclidean measure as the basis for measuring distance between se-
quences. Recent studies, however, suggest that the Euclidean distance
often fails to produce proper results due to the irregularity in the data,
which is not so uncommon in our problem domain. Addressing this prob-
lem, some non-Euclidean measures, such as Dynamic Time Warping
(DTW) and Longest Common Subsequence (LCS), have been proposed.
However, most of the previous work in this direction focused on the
whole sequence matching problem where query and data sequences are
the same length. In this paper, we propose a novel subsequence match-
ing framework using a non-Euclidean measure, in particular, LCS, and
a new index query scheme. The proposed framework is based on the
Dual Match framework where data sequences are divided into a series
of disjoint equi-length subsequences and then indexed in an R-tree. We
introduced similarity bound for index matching with LCS. The proposed
query matching scheme reduces significant numbers of false positives in
the match result. Furthermore, we developed an algorithm to skip ex-
pensive LCS computations through observing the warping paths. We
validated our framework through extensive experiments using 48 differ-
ent time series datasets. The results of the experiments suggest that our
approach significantly improves the subsequence matching performance
in various metrics.

Keywords: Subsequence matching, Longest Common Subsequence,
Dual Match.

� He was supported by the IT Scholarship Program supervised by Institute for Infor-
mation Technology Advancement and Ministry of Information and Communication
in Republic of Korea.

�� Corresponding author. His work was partially supported by the Microsoft Bioinfor-
matics Award and the Korea University Research Grant.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 585–600, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

586 T.S. Han, S.-K. Ko, and J. Kang

Somebody says Query :

Palm orientation of Australian Sign Language

Somebody says Query : Somebody says Query :

Palm orientation of Australian Sign Language

(a) Whole sequence matching

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

Heart Peat signal

Query : Heart bit

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

Heart Peat signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

Heart Peat signal

Query : Heart bit Query : Heart bit

(b) Subsequence matching

Fig. 1. Whole sequence matching and Subsequence matching

1 Introduction

One of the basic problems in handling time series data is locating a pattern
of interest from the long sequence of input data [1,2,7]. The sequence match-
ing problem is largely classified into two categories: whole sequence matching
and subsequence matching. Whole sequence matching involves finding, from the
dataset, all sequence entries whose lengths are equal to the query and that fall
within the similarity threshold specified by the user. For example, Figure 1(a)
illustrates the whole sequence matching using the sign language palm orientation
example. It shows the palm orientation readings from four different people (rows)
using Australian Sign Language saying seven different words (columns)[4]. Each
word from different signers has the same length and is searched for a given query.

Subsequence matching finds all subsequences from a longer data sequence that
matches to the query. Figure 1(b) shows an example. It shows a short query se-
quence, one heart beat signal, and all matching regions from the longer data
sequence. Subsequence matching is a more general problem than the whole se-
quence matching problem. However, most of the previous work has focused on
the whole sequence matching problem [1,5,11]. While applying whole sequence
matching techniques to the subsequence matching can be possible through GEM-
INI [2] framework, the application is not straightforward when non-Euclidean
distance measures are used. Euclidean measure is sensitive to noise and due to
the irregular nature of the data in sequence applications (e.g., moving object tra-
jectories, query-by-humming, etc.), non-Euclidean measures are often desirable.
The non-Euclidean distance measures such as DTW (Dynamic Time Warping)
and LCS (Longest Common Subsequence) address some of the problems that
Euclidean measure has [5,10].

In this work, we propose an efficient index searching framework for subse-
quence matching using LCS. We choose LCS because it is known to be more

Efficient Subsequence Matching Using the LCS with a Dual Match Index 587

robust to the noise in the data than DTW [3,9] and yet to the best of our knowl-
edge no previous work has considered it in the context of subsequence matching.
We made the following contributions:

– We proposed a subsequence matching framework that employs a non-
Euclidean distance measure LCS. It is for a more intuitive matching
performance.

– We formally introduced the criteria for pruning the search space when using
time series index with LCS similarity function.

– We introduced a new index query scheme, multiple window sliding, where
several adjacent windows are queried and aggregated in order to improve
the query performance.

– We proposed a new index search scheme that enables us to skip unnecessary
similarity computations for the consecutive matching subsequences.

2 Background and Related Work

2.1 Notational Convenience

In order to state the problem and concepts clearly, we define some notations
and terminologies in Table 1. In our work, we assume that a time series is a
totally ordered set of real numbers and each real number element is collected
from a single channel sensor device. A subsequence is a subset of a time series
in contiguous time stamps.

Table 1. The basic notation

B A time series data sequence, < b1, b2, . . . > , each bi is a real
number at the ith time stamp.

|B| Length of the sequence B

Bi The ith subsequence of B when B is divided into disjoint sub-
sequences of an equal length

Q A query sequence, usually |Q| � |B|
B[i : j] A subsequence of B from time stamp i to j

2.2 Subsequence Matching Framework (DualMatch vs. FRM)

There are at least two subsequence matching frameworks, FRM [2]1 and Dual
Match [7]. Both of the matching processes are illustrated in Figure 2. Let n
be the number of data points and w be the size of an index window. In FRM,
the data sequence is divided into n − w + 1 sliding windows. Figure 2(a) shows
the FRM indexing step. Every window is overlapped with the next window
except the first data point. Whereas, query Q is divided into disjoint windows
(Figure 2(b)), and each window is to be matched against the sliding windows of

1 It is named after its authors.

588 T.S. Han, S.-K. Ko, and J. Kang

Query, Q

FRM Subsequence Matching

Data, B

(c) Index Matching

Sliding Windows on Data

(a)

(b)

(d)

(e)

Dual Match Subsequence Matching

(f) Index Matching

Sliding Windows on Query

Query, Q

FRM Subsequence Matching

Data, B

(c) Index Matching

Sliding Windows on Data

(a)

(b)

(d)

(e)

Dual Match Subsequence Matching

(f) Index Matching

Sliding Windows on Query

Fig. 2. Two Subsequence Matching Frameworks

the data sequence (Figure 2(c)). On the other hand, in Dual Match framework,
data sequence is divided into disjoint windows (Figure 2(d)), and part of the
query in its sliding window is matched to the data indices (Figure 2(e) and
2(f)). Since the Dual Match does not allow any overlap of the index windows,
it needs less space for the index and, in consequence, index searching is faster
than FRM. Through the index matching, we get a set of candidate matches and
the actual similarity or distance is computed for them. Since the length of the
data is usually very long, Dual Match framework reduces the indexing efforts.
We employ the Dual Match as our indexing scheme.

2.3 Dual Match Subsequence Matching with Euclidean Distance

Dual Match consists of three steps. First, in the indexing step, data is decomposed
into disjoint windows and each window is represented by a multi-dimensional vec-
tor. They are stored in a spatial index structure like R-tree. Second, query se-
quence is decomposed into a set of sliding windows and each window is trans-
formed into the same dimensional vector representation as the index window. The
size of the sliding window is the same as that of the index window. It is proven
that if the length of the query is longer than twice of the index length, one of the
sliding windows in the query is guaranteed to match to a data index that belongs
to a subsequence that matches to the query [7]. The index matching always re-
turns a super set of the true matching intervals since the similarity of the index
and query sliding window is always larger than the similarity of the true match.
Lastly, based on the positions of the matching sliding windows, whole matching
intervals are decided and actual similarities are computed.

Efficient Subsequence Matching Using the LCS with a Dual Match Index 589

0 2 4 6 8 10

0
0.1

0.8
1

0
0.1

0.8
0.9

1

LCS
[δ=2,ε =0.2]

 = 8/9

A

B

(a) Sequence A, B and warping path

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 1 1 0 0 0 0 0 0

1 2 2 2 0 0 0 0 0

1 2 3 3 3 0 0 0 0

0 2 3 3 3 3 0 0 0

0 0 3 4 4 4 4 0 0

0 0 0 4 5 5 5 5 0

0 0 0 0 5 6 6 6 6

0 0 0 0 0 6 7 7 7

0 0 0 0 0 0 7 8 8

B

A

LCS Matrix γ
|A|, |B|

 and Warping Path

(b) Sakoe-Chiba band in LCS warp-
ing path martix

Fig. 3. An example of LCS computation

2.4 A Non-euclidean Distance LCS

Non-Euclidean similarity measures such as LCS and DTW are useful to match
two time series data when the data has irregularity. The LCS is known to be
robust to the noise since it does not count the outliers in the sequence that fall
out of the range (ε). Both use the same dynamic programming procedure to
compute the optimal warping path within the time interval (δ). We chose LCS
as our distance function and its definition is given below.

Definition 1. [10] Let Q=< q1, q2, ..., qn > be a query and B=< b1, b2, ..., bn >
be a data subsequence of time series. Given an integer δ and a real number 0
< ε <1, we define the cumulative similarity γi,j(Q, B) or γi,j as

γi,j =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i, j = 0
1 + γi−1,j−1 if|qi − bj| ≤ ε

and |i − j| ≤ δ
max(γi,j−1, γi−1,j) otherwise

and using that, LCS similarity with δ and ε as

LCSδ,ε(Q, B) = γ|Q|,|B|

LCS(Q, B) returns an integer between 0 and min(|Q|, |B|). δ is the allowable
matching interval in the time dimension and ε is the allowable error bound
in the data value dimension. Here is an example of LCS match for the two
sequences A and B of the same length where A = <0, 0, 0, 0, 0.8, 1, 0.9, 0.1,
0> and B = <0, 0.1, 0, 0.8, 1, 1, 0, 0, 0.1>. Figure 3(a) shows the LCS warping
path. Figure 3(b) shows the LCS computation process in the LCS warping path
matrix. It is constructed by dynamic programming of the cumulative similarity
γ|A|,|B|. The non-zero boxes in light color in the LCS warping path matrix of
Figure 3(b) is called a Sakoe-Chiba band [8].

590 T.S. Han, S.-K. Ko, and J. Kang

0 50 100 150 200 250 300 350
−40

−20

0

20

40

Matching Subsequences

Query, Q

δ = 2, ε = 2, θ = 36, |Q|=40

Fig. 4. Matching subsequences in subsequence matching

3 Problem Statement

The purpose of the subsequence matching is to find subsequences similar to the
given query sequence. Subsequence matching framework with Euclidean distance
has been already developed as we stated in the previous section. However, to the
best of our knowledge, many things have not yet been considered when we apply
non-Euclidean function to the subsequence matching. We need to improve the
index search performance and we need to provide an index matching criteria
that avoids expensive computation caused by non-Euclidean measures.

In order to describe what should be the output of the subsequence matching,
we define matching subsequences for a query sequence Q in terms of LCSδ,ε.

Definition 2. Let Q=< q1, q2, ...qm > be a query and B=< b1, b2, ...bn > be a
data subsequence of time series. Given an integer δ, a real number 0 < ε <1
and user defined similarity threshold θ, we define the matching subsequences,
M = {B[i : j] | LCSδ,ε(Q, B[i : j]) ≥ θ}

There may be many overlapping subsequences in the same region that exceed the
similarity threshold θ. We restrict the scope of our work to find only the longest
possible matching subsequences of the length |Q| + 2δ. We do not return all
matching subsequences that are properly contained in the longest possible one
returned. It could be prohibitively expensive to find all matches of all lengths us-
ing a non-Euclidean measure. It makes sense to return only the longest matching
subsequences since it contains all matching subsequences shorter than |Q|+2δ in
the region. It is possible to search shorter matching subsequences, if needed, after
the search process for the longest ones completes. In Figure 4, all the matching
subsequences of size |Q| + 2δ are visualized in grey dotted lines.

Formally, our problem is defined as follows:Find all matching subsequences
B[i : j] of length |Q| + 2δ for data sequence B and query Q such that the
similarity LCSδ,ε(Q, B[i : j]) is no less than s% of the |Q|, s

100 |Q|.

4 Subsequence Matching with LCS

4.1 Linear Search and Skipping LCS Computation

A straighforward approach to the subsequence matching is comparing the query
subsequence Q to all of the candidate subsequences of the data sequence B in

Efficient Subsequence Matching Using the LCS with a Dual Match Index 591

Data

Query

[δ=8, ε =0.15]
 = 32

0 10 20 30 40 50

 = 19 Similarity
[δ=8, ε =0.15]

Similarity

0 10 20 30 40 50

Data

Query

(a) Aligned to the left (b) Aligned to the center

Fig. 5. Alignment with LCS when |Query| = 32 and |Data| = 48

a sequential manner. All the candidates can be chosen by sliding a fixed size
window along the data sequence.

Alignment in LCS. When we compare query Q to a candidate data subse-
quence of length |Q| + 2δ, we align the query in the middle of each candidate as
illustrated in Figure 5(b). In the case of the whole sequence matching, alignment
is not a problem since the query and data have the same length. However, in
our subsequence matching, we need to locate the query in the candidate subse-
quence. If we align the query to the left side of a candidate, we may find a correct
subsequence. In Figure 5(a), shorter query is not matched well to the longer data
when aligned to the left. The right side of the query cannot be compared with
the data since the δ is not big enough to cover all the matching points in the
data. Larger δ increases the computational complexity of the matching process.
Figure 5(a) shows that the query is correctly matched with the same δ when
properly aligned.

Skipping LCS Computation. We can avoid expensive similarity computa-
tions of the adjacent subsequences by exploiting the LCS warping path and the
local constraint such as the Sakoe-Chiba band. In the subsequence matching,
we can think of the computation matrix as a moving window along the data
sequence as shown in Figure 6.

Let us take a look at an example. Assume that |Q| = 4 and the user wants to
find all the subsequences whose similarity is larger than or equal to 3.
Figure 6(a) shows the LCS warping path which is represented as a set of arrows.
In this case, LCS(Q, B[1 : 6]) = 4. Darker cells represent the Sakoe-Chiba band.

1 2 3 4 5 6 7 8

1

2

3

4

1

2

3

4

1

2

3

4

Need new

computation

At least

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) (b) (c)
Data B

Query

Q

Sakoe-Chiba band

1 2 3 4 5 6 7 8

1

2

3

4

1

2

3

4

1

2

3

4

Need new

computation

At least

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) (b) (c)
Data B

Query

Q

Sakoe-Chiba band

Fig. 6. An example of skipping LCS computation when |Q| = 4 and δ = 1

592 T.S. Han, S.-K. Ko, and J. Kang

MBEQ
Query

Q

Sliding

Windows

Intersection of

B

Q

…

N-dimensional
R-tree

w1
v1

N-dimensional
R-tree

w1
v1

v1<(u11, u12, u13), (l11, l12, l13)>

MBEQ

^ ^ ^ ^ ^ ^

u11
^
u11
^

u12û12
^

u13û13
^

l13
^
l13
^l12

^
l12
^

l11
^
l11
^

Data

B

…

(c) (d) (e)

(a) (b)

Indexed by disjoint windows

v
1

v
1

w1 : <(u
11

, u
12

, u
13

), (l
11

, l
12

, l
13

)>w1 : <(u
11

, u
12

, u
13

), (l
11

, l
12

, l
13

)>

w
1

w
1

and v
1

w
1

and v
1

w
2

u
12

u
11

l13

u
13

l12

u
21

u
22

l22

l21

l11
MBR

…

Decomposed into sliding windows MBEQ by LCSS d, e

Fig. 7. Indexing and Index Matching where w=9 and N=3

In Figure 6(b), we move a sliding window by a time stamp. The Sakoe-Chiba
band still includes the warping path. In this case, we don’t have to compute
the LCS(Q, B[2 : 7]) since the dynamic programming finds a maximum warping
path in the Sakoe-Chiba band and LCS(Q, B[2 : 7]) must be larger than or
equal to 4. In Figure 6(c),we need to compute LCS(Q, B[3 : 8]) since the first
three warping steps now became invalid.

We can skip the computation of a sliding window by tracing the warping path.
If we find that the Sakoe-Chiba band of the current LCS matrix includes the
previous warping path more than or equal to the user defined threshold, then
we can skip the LCS computation. The skipping goes until a Sakoe-Chiba band
includes warping path less than the user defined threshold. It is a useful property
to reduce the expensive similarity computation in the subsequence matching
where the adjacent window usually has a similar similarity value.

4.2 Index Match

Indexing enables us to avoid unecessary similarity computations for true-negative
candidates for subsequence matching. In order to do that, we compute the prun-
ing criteria to choose candidate matching subsequences with LCS. We also in-
troduce in this section a new framework to efficiently search the index.

Indexing. Data is divided into equi-length disjoint windows for indexing. Each
window is then represented as a multi-dimensional vector. That is, data sequence
B is divided into equi-length disjoint windows < wi >. Let N be the dimension-
ality of the space we want to have indexed. An MBR, MinimumBounding
Rectangle, represents a dimension. N MBRs for a wi, are transformed into −→wi

=< (ui1, . . . , uiN), (li1, . . . , liN) > ,where uij and lij represent the maximum and
minimum values in the jth interval of wi. −→wi is stored in an N dimensional R-tree.
An example is illustrated in Figure 7(a). In the figure, the data in the first win-
dow, w1 =< b1, ..., b9 > is transformed into −→w1 =< (u11, u12, u13), (l11, l12, l13) >.
It is stored in an R-tree as showin in Figure 7(b).

Efficient Subsequence Matching Using the LCS with a Dual Match Index 593

Query, QQuery, Q

(a) Naive Single Win-
dow

Query, QQuery, Q

(b) Single Window

Query, QQuery, Q

(c) Multiple Window

Fig. 8. Window sliding schemes when |v|=4

Index Matching with LCS. Query Q is compared first to the index. Q is
transformed into an MBE, Minimum Bounding Envelope, with LCSδ,ε function
as illustrated in Figure 7(d). Let MBEQ be an MBE for Q. Let the ith sliding
window of Q be vi. It is transformed into −→vi =< (ûi1, . . . , ûiN), (l̂i1, . . . , l̂iN) >,
where ûij and l̂ij are the maximum and minimum values respectively in MBEQ

of the jth MBR of the vi. This is illustrated in Figure 7(e). Since MBEQ covers
the whole possible matching area, any point that lies outside the MBEQ is
not counted for the similarity. The number of intersecting points between B
and MBEQ provides the upperbound for LCSδ,ε(B, Q) [10]. The number of
intersections is counted through the R-tree operation as shown in Figure 7(b),
which is the intersection of Figure 7(a) and Figure 7(e).

4.3 Window Sliding Schemes in Index Matching

There are three ways to slide query windows and choose the candidate matching
subsequences: Naive Single Window Sliding, Single Window Sliding and Multiple
Window Sliding. We explain each window sliding scheme and show how the the
bounding similarity is computed.

Naive Single Window Sliding. In this scheme, as illustrated in Figure 8(a),
we compare a sliding window of a query to index, which is first introduced in
the Dual Match [6]. This overestimation method cannot be applied to the LCS
based subsequence matching since it is based on the Euclidean distance. We
should consider δ on both ends of the query sliding window. In Figure 9 (a), a
sliding window v of a query Q is matched to a window w of the data sequence B.
In actual index matching, near the ends of the point of the Q cannot be matched
to the points of w as in Figure 9 (b). The data is just indexed by MBR that
does not consider δ time shift.

We compute the similarity threshold for the naive single window sliding
method.

Let v be a sliding window of Q. The minimum similarity, θ is

θ = |v| − (|Q| − s

100
|Q|) − 2δ (1)

594 T.S. Han, S.-K. Ko, and J. Kang

… …

v

?
?

(a) Simple single sliding window
(b) Lost
matching points

Q

B

Query’s

MBE

Sliding

Windows
For Q

Query’s

MBE

w w

v

d d

… …

v

?
?

(a) Simple single sliding window
(b) Lost
matching points

Q

B

Query’s

MBE

Sliding

Windows
For Q

Query’s

MBE

w w

v

d d

Fig. 9. Matching points not captured in the index matching using LCS

The term, (|Q| − s
100 |Q|) for the Equation (1) is subtracted from |v| when all

the mismatches can be found in the current window v. The last term 2δ is the
maximum possible number of the lost matching points.

Single Window Sliding. When the query length is long enough to contain
more than one sliding window, we can use the consecutive matching information
as in Figure 8(b). Assume query Q and matching data subsequence B has M
consecutive disjoint windows, Bi’s and Qi’s. If some Qi and Bi pairs are not
similar, then the other Qj and Bj pairs should be similar and we can recog-
nize the B and Q pair is a candidate through Bj and Qj . When all Bi and Qi

pairs have the same similarities, we should have the minimum value to decide
the candidate for comparison. The multiPiece search [2] is proposed to choose
candidates through this process. The same applies for the Euclidean distance
measure. In the multiPiece, the two subsequences, B and Q, of the same length
are given and each can be divided into p subsequences each of which has length l.
d(B, Q) < ε ⇒ d(Bi, Qi) < ε√

p for some 1 ≤ i ≤ p where Bi, Qi are ith subse-
quence of the length l and ε > 0. In the case of the Dual Match using Euclidean
distance, we can count a candidate if the distance is less than or equal to ε√

p .
Similarly, in the case of LCS, LCSδ,ε(B, Q) > s

100 |Q| ⇒ LCSδ,ε(v, Q[i : j]) >
M|v|−(|Q|− s

100 |Q|)−2δ

M for some j−i+1 = |v|. So the similarity threshold for single
window sliding, θs is

θs = |v| −
(|Q| − s

100 |Q|) + 2δ

M
(2)

As illustrated in Figure 8(b), M consecutive sliding windows are thought to be
one big sliding window that might lose warping path at both ends. The threshold
for the M sliding windows is M |v|−(|Q|− s

100 |Q|)−2δ and it is divided by M for
one sliding window. If one of the sliding windows among consecutive M sliding
windows in Q is larger than or equal to θs, we can get a candidate and we don’t
have to do index matching for the remaining consecutive sliding windows at the
same candidate location.

Efficient Subsequence Matching Using the LCS with a Dual Match Index 595

8 8 9
8 1

4 2

20 12

v1
v2
v3

Data B

Vector A

Query
Q

8
3

w1 w2 wm
. . .

Temporary vector to store
matching results 8 8 9

8 1
4 2

20 12

v1
v2
v3

Data B

Vector A

Query
Q

8
3

w1 w2 wm
. . .

Temporary vector to store
matching results

Fig. 10. Index matching result

Multiple Window Sliding. In this new window sliding scheme, as illustrated
in Figure 8(c), the matching results of consecutive sliding windows in a query
are aggregated. If we sum up the index matching result from M consecutive
sliding windows, we can further reduce false positives. Let M be the number of
consecutive windows fitted in a query Q. We vary M to contain the maximum
number of sliding windows depending on the left most window.

The index matching results of each sliding window for all disjoint data win-
dows are added up to get M consecutive sliding windows. In Figure 10, the
aggregation is done by accumulating the results in a vector A of the size |B|

w .
B is the data sequence and w is the length of an index window. Assume that
< v1, . . . , vM > is a series of consecutive windows in the query Q. The index
matching results of a query window vj is placed in a temporary row vector in
Figure 10. It is added to A and A is shifted to the right. The next matching
result for vj+1 is placed in the temporary row vector. It is added to A and A is
shifted right. In Figure 10, we get A such that

A[1] = LCSδ,ε(−→v1 , −→w1) + LCSδ,ε(−→v 2,
−→w 2) + LCSδ,ε(−→v 3,

−→w 3),
A[2] = LCSδ,ε(−→v1 , −→w2) + LCSδ,ε(−→v 2,

−→w 3) + LCSδ,ε(−→v 3,
−→w 4), ...

A[m] = LCSδ,ε(−→v1 ,
−−−→wm−2) + LCSδ,ε(−→v 2,

−→w m−1) + LCSδ,ε(−→v 3,
−→w m).

The shift operations aggregate the consecutive index matching results.
The similarity threshold for multiple sliding windows, θm, is computed as if

the consecutive M windows move together like one big window.

θm = M |v| − (|Q| − s

100
|Q|) − 2δ (3)

θm is for an aggregate comparison of M consecutive sliding windows while θs is
for one sliding window.

Through the aggregation of the consecutive index matching information, we
can enhance the pruning power of the index. That is, we have less false alarms
than the single window sliding scheme. In Figure 10, the diagonal sum illustrates
the aggregatation of the consecutive index matching results. If θs = 8, the first,

596 T.S. Han, S.-K. Ko, and J. Kang

Query, Q

Actual Matching intervals

I3I1 I2

1

2

3

1 2 3

Data, B

Data, B

Query, Q

Actual Matching intervals

I3I1 I2

1

2

3

1 2 3

Data, B

Data, B

Fig. 11. Postprocessing to find whole length of the candidate matching subsequences

second and the fifth diagonals are selected as the candidates since one of the
matches is greater than or equal to 8. However, in case of the multiple window
sliding, if the θm = 20, the fifth diagonal is not a candidate since the sum 12 is
less than 20, so it has less false alarms than the single window sliding scheme.

Post-Processing. Post-processing is the final procedure to decide the whole
length of the matching subsequence depending on the position of the match-
ing sliding window and matching index. The actual similarity computation is
done for the whole interval of the subsequence against the query. Figure 11
demonstrates the postprocessing. We intensionally omit the adjacent matching
subsequences and show only one matching. Through the index matching pro-
cess, matching indexes for each sliding window 1©, 2©, 3© are to be found and
then whole length of the candidate subsequence is computed including 2δ area.
In Figure 11, one candidate subsequence has an index matching area and a four
box area.

Skipping LCS computation. After deciding the whole length of the candi-
date subsequences, skipping LCS computation is applied to reduce the com-
putational load. Subsequence matching cannot avoid many adjacent matching
subsequences where one subsequence is found. By tracing the warping path of the
matching subsequences in its LCS warping path matrix, we can reduce the LCS
computation.

5 Experiment

Experiments were conducted on a machine with 2.8 GHz pentium 4 processor
and 2GB Memory using Matlab 2006a and Java. Here are the parameters to run
the tests.

– Dataset. We used 48 different time series datasets2 for evaluation. Each
dataset has a different length of data and a different number of channels.

2 http://www.cs.ucr.edu/ eamonn/TSDMA/UCR, The UCR Time Series Data Min-
ing Archive.

Efficient Subsequence Matching Using the LCS with a Dual Match Index 597

100
150

180
200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

0

50

100

150

Query Length

37:evaporator
38:TOR95
39:network
40:synthetic control
41:burstin
42:leaf all
43:darwin
44:motorCurrent
45:pgt50 alpha
46:robot arm
47:twopat
48:EEG heart rate

25:standardandpoor500
26:spot exrates
27:attas
28:shuttle
29:soiltemp
30:flutter
31:ballbeam
32:glassfurnace
33:balloon
34:earthquake
35:Realitycheck
36:wind

13:cstr
14:eeg
15:sunspot
16:leleccum
17:infrasound beamd
18:greatlakes
19:ocean
20:dryer2
21:memory
22:powerplant
23:speech
24:ocean shear

Candidate Ratio for (Single / Multiple)
(� = 0.01, � = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data File

1:Fluid dynamics
2:power data
3:steamgen
4:tide
5:tickwise
6:buoy sensor
7:random walk
8:pHdata
9:winding
10:koski ecg
11:foetal ecg
12:chaotic

of Candidate by Single
of Candidate by Multiple

Fig. 12. Candidates generated by single window sliding and multiple window sliding

We set the length of each to 100,000 by attaching the beginning to the end
so that all the datasets have the same length.

– Index. We set the dimension to 8 and MBR size to 4. Regarding the param-
eters to index dataset such as dimension, MBR and R-tree size need domain
knowledge.

– Query. We choose 4 fixed length of queries, 100, 150, 180 and 200 so that
each length includes 3,4,5 and 6 windows. 10 queries for each length are
randomly selected from the data sequence.

– Similarity. ε is set to 1 % of the data range, δ is 2.5 % of the |Q|. Similarity
threshold s is set to 99%.

5.1 Different Sliding Schemes and Candidates

We compare the performance of the two different index sliding schemes : single
window sliding and multiple window sliding scheme. Figure 12 shows that the ra-
tios, # of candidates by single windows sliding

of candidates by multiple windows sliding for different lengths of queries of each
dataset. Ratios greater than one means that the multiple window sliding scheme
generates less candidates than those of the single window sliding scheme. The
multiple window sliding scheme has less false alarms than the single window slid-
ing scheme in the tests. The ratio varies from 1 to 140. Multiple sliding window
generates only 1

140 of the single window sliding scheme in the Fluid dynamics
dataset. Figure 13 shows the median values from the Figure 12 for each length
of the queries. Figure 13 summarizes how much the performance is improved as
the length of query gets longer in all of the datasets. It demonstrates that as the
length of a query gets longer to include more index windows, we have less false
alarms in the multiple window sliding than in the single window sliding.

However in the datasets such as EEG heart rate, two pat or robot arm, there
is not much difference between the two methods. We can explain it in terms of
the index. For these datasets, all of the disjoint data windows are very similar to
each other. Figure 14 shows the first 500 points index of the best and the worst

598 T.S. Han, S.-K. Ko, and J. Kang

100 150 180 200

1
2
3
4
5
6
7

Median Candidate Ratio of Single/Multiple
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Query Length, |Q|

Median of
of Candidate by Single
of Candidate by Multiple

Fig. 13. Summary of Candidate generated in Figure 12

Best 2
0 50 100 150 200 250 300 350 400 450 500

−1

0

1

fluid
dynamics

0 50 100 150 200 250 300 350 400 450 500
924

1722

power
data

Worst 2
0 50 100 150 200 250 300 350 400 450 500

16.28

43.32

EEG
heart rate

0 50 100 150 200 250 300 350 400 450 500
−5

5

twopat

Fig. 14. Index

three datasets regarding the candidate generation. Comparing the index of the
top three datasets to the bottom three, we cannot easily distinguish one window
from another. It makes hard to search the index quickly even though multiple
index information is used.

5.2 Goodness and Tightness

Goodness and tightness are metrics that shows how well the index works [5].

Goodness =
of all true matches
of all candidates

, T ightness =
Sum of all true similarity

Sum of all estimated similarity
(4)

Goodness shows how much the index reduces the expensive computations.
Tightness shows how the estimated values are close to the actual values in in-
dexing [5]. If the tightness is 1.0 then it means estimation is perfect. In Figure 15,
the multiple sliding window scheme shows higher goodness and tightness than
that of the single window sliding scheme.

Efficient Subsequence Matching Using the LCS with a Dual Match Index 599

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

0

0.5

1

Goodness
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

for Single Sliding

Data File

G
oo

dn
es

s

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

0

0.5

1

200
180

Query Length

150
100

for Multiple sliding

Data File

G
oo

dn
es

s

200
180

Query Length

150
100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

0

0.5

1

Tightness
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data File

for Single Sliding

Ti
gh

tn
es

s

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

0

0.5

1

Data File

37:steamgen
38:sunspot
39:synthetic control
40:tide
41:TOR95
42:twopat
43:wind
44:winding
45:koski ecg
46:EEG heart rate
47:network
48:tickwise

for Multiple sliding

25:pgt50 alpha
26:pHdata
27:powerplant
28:power data
29:random walk
30:Realitycheck
31:robot arm
32:shuttle
33:soiltemp
34:speech
35:spot exrates
36:standardandpoor500

Ti
gh

tn
es

s

13:Fluid dynamics
14:flutter
15:foetal ecg
16:glassfurnace
17:greatlakes
18:infrasound beamd
19:leaf all
20:leleccum
21:memory
22:motorCurrent
23:ocean
24:ocean shear

1:attas
2:ballbeam
3:balloon
4:buoy sensor
5:burstin
6:chaotic
7:cstr
8:darwin
9:dryer2
10:earthquake
11:eeg
12:evaporator

Query Length
100

200
180

150
200

180
150

100
Query Length

Fig. 15. Goodness and Tightness

5.3 Improving Performance by Skipping Similarity Computations

Figure 16 shows how the skipping of the similarity computation is effective. The
chart shows that we can avoid many similarity computations as the length of
the query gets longer.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

0

0.2

0.4

0.6

0.8
37:glassfurnace
38:pgt50 alpha
39:robot arm
40:soiltemp
41:darwin
42:balloon
43:earthquake
44:twopat
45:evaporator
46:EEG heart rate
47:network
48:burstin

200
180

Query Length

150
100

25:dryer2
26:power data
27:steamgen
28:buoy sensor
29:foetal ecg
30:koski ecg
31:sunspot
32:speech
33:motorCurrent
34:leaf all
35:synthetic control
36:flutter

13:powerplant
14:TOR95
15:spot exrates
16:attas
17:leleccum
18:chaotic
19:wind
20:Fluid dynamics
21:pHdata
22:eeg
23:tide
24:winding

1:ballbeam
2:cstr
3:greatlakes
4:infrasound beamd
5:memory
6:ocean
7:ocean shear
8:random walk
9:Realitycheck
10:shuttle
11:standardandpoor500
12:tickwise

Skipped Matching of all Matchings
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data File

 #
 S

ki
pe

d
/ #

 C
an

di
da

te

Fig. 16. Skipping Similarity Computations

600 T.S. Han, S.-K. Ko, and J. Kang

However it also shows that the skipping mechanism does not work well for the
datasets that cannot be properly indexed, since the index parameter captures
all of the windows in the data as well as the ones similar to the LCS matrix.

6 Conclusion

We proposed a novel subsequence matching framework that employs a non-
Euclidean distance, a multiple window sliding scheme and a similarity skipping
idea. As validated through experiments with various datasets, proposed methods
enable us to have more intuitive and efficient subsequence matching algorithms.
The multiple window sliding scheme was more efficient than the single win-
dow sliding scheme for the longer query in candidate generation, goodness and
tightness. In addition, skipping the LCS computation greatly reduces expensive
similarity computations.

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence
databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993)

2. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: Proceedings 1994 ACM SIGMOD Conference, Mineapo-
lis, MN, ACM Press, New York (1994)

3. Gunopoulos, D.: Discovering similar multidimensional trajectories. In: ICDE ’02.
Proceedings of the 18th International Conference on Data Engineering, p. 673.
IEEE Computer Society Press, Los Alamitos (2002)

4. Kadous, M.: Grasp: Recognition of australian sign language using instrumented
gloves (1995)

5. Keogh, E.J.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417
(2002)

6. Moon, Y.-S., Whang, K.-Y., Loh, W.-K.: Duality-based subsequence matching in
time-series databases. In: Proceedings of the 17th ICDE, Washington, DC, pp.
263–272. IEEE Computer Society Press, Los Alamitos (2001)

7. Moon, Y.-S., Whang, K.-Y., Loh, W.-K.: Efficient time-series subsequence match-
ing using duality in constructing window. Information Systems 26(4), 279–293
(2001)

8. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition, pp. 159–165 (1990)

9. Sankoff, D., Kruskal, J.: Time warps, string edits, and macromolecules: the theory
and practice of sequence comparison. Addison-Wesley, Reading (1983)

10. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-
dimensional time-series with support for multiple distance measures. In: KDD ’03,
pp. 216–225. ACM Press, New York (2003)

11. Zhu, Y., Shasha, D.: Warping indexes with envelope transforms for query by hum-
ming. In: SIGMOD ’03, pp. 181–192. ACM Press, New York (2003)

	Efficient Subsequence Matching Using the Longest Common Subsequence with a Dual Match Index
	Introduction
	Background and Related Work
	Notational Convenience
	Subsequence Matching Framework (DualMatch vs. FRM)
	Dual Match Subsequence Matching with Euclidean Distance
	A Non-euclidean Distance LCS

	Problem Statement
	Subsequence Matching with LCS
	Linear Search and Skipping LCS Computation
	Index Match
	Window Sliding Schemes in Index Matching

	Experiment
	Different Sliding Schemes and Candidates
	Goodness and Tightness
	Improving Performance by Skipping Similarity Computations

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

